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Purification Process by Solution Zone 
Passages 

Part 1 Process Theory 

I. F. N ICOLAU 
Institute for Atomic Physics, Bucharest, Romania 

The travelling heater zone-refining process and its relation to the travelling solvent and 
travelling heater methods of growing single crystals are described. 

The variation of the zone composition during the zone passage is derived, proceeding 
from the solute-impurity-solvent diagrams, and the impurity distribution along the 
crystallisate, after a zone passage, is derived, by considering that the solute and the 
impurity form either a solid solution or an eutectic. The influence of the parameters which 
determine the distribution is discussed. The impurity distribution along the crystallisate 
after a number of zone passages is derived. 

The application of the process is suitable in the case of a sub-unity distribution 
coefficient, the zone passage efficiency being higher, the smaller the distribution 
coefficient and the steeper the slope of the dissolution straight line. The process is 
particularly advantageous when the solute and the impurity form an eutectic. It is 
advantageous to select a high dissolution temperature, close to the solvent boiling 
temperature, and a crystallisation temperature as near as possible to the dissolution 
temperature, when the solute and the impurity form either a solid solution or an 
eutectic. 

1. Introduction 
The travelling heater method (THM) for the 
growth of single crystals was introduced by 
Wolffand Mlavsky [1 ]. This method differs from 
the travelling solvent method (TSM) [2] al- 
though it also uses a travelling solvent zone 
under the action of a temperature gradient. The 
T S M  uses a thin solvent zone that travels at a 
slow rate under the action of a low temperature 
gradient, the temperature gradient being fixed 
along the charge and the temperatures of the 
leading and trailing edges increasing simul- 
taneously with the zone passage. The T H M uses 
a large solvent zone which travels faster under 
the action of a high-temperature gradient; the 
temperature gradient is only constant in the 
zone and travels along the charge with the 
heater, the temperatures of the leading and trail- 
ing edges remaining constant during the zone 
passage. This method has been successfully 
applied to the growth of single crystals of pure 
compounds and solid solutions, e.g. GaP [3], 
�9 1970 Chapman and Hall Ltd. 

ZnO [41, eb(Ti,  Zrl-,)Oa [5], (Zn~ Hg,-~)Te 
and Ga(P~ Asl-~) [6], (Pb~ Srx-~)TiOa [7] and 
CuCI [8]. In the case of solid solutions, in order 
to obtain single crystals of constant composition 
it was necessary to compensate for the segrega- 
tion by using zones enriched in one of the com- 
ponents and supplying to the zone a solution 
richer in that component. 

The T S M is only a renaming of the tempera- 
ture gradient zone-melting process (T G Z  M) [9 ], 
for the growth of single crystals. 

For this reason we suggest the name "travel- 
ling heater zone-refining" (THZR),  because the 
T H M of growing single crystals is considered a 
purification process. This latter process was 
originated by Pfann [10] as a zone-refining pro- 
cess which uses a solvent added to the zone at 
the beginning of the zone passage and which is 
eliminated from the zone at the end of zone 
passage. This process has two advantages over 
zone melting (ZM): (i) it works at lower tem- 
peratures and (ii) if the solvent is suitably chosen 
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it permits a better separation. However, the 
application of this process presents two diffi- 
culties, viz. (i) very slow travel rates are necessary 
to avoid solvent inclusion in the crystallisate and 
(ii) the elimination of the solvent at the end of 
zone passage. 

These difficulties were overcome by using a 
zone heater with two temperature levels, as 
shown in fig. 1, so that crystallisation occurs 
throughout the zone passage at a temperature 
higher than the solvent melting temperature, 
and subjects the solution zone to forced con- 
vection. Since the solution zone contains a small 
quantity of solute, the solution zones can be 
decanted at the zone passage end so that the 
process has neither inverse impurity diffusion 
nor a limiting distribution. In this manner we 
have successfully applied the process to the puri- 
fication of some inorganic salts using water as a 
solvent, i.e. to those salts which crystallise 
massively and adherently (e.g. alkali metal phos- 
phates, coloured sulphates, alums, picromerites, 
alkali metal bichromates, etc.), employing solu- 
tion zone travel rates of 0.25 to 1 mm min -1. 

/- 
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Figure I The pr inciple layout  of the T H Z R  process. 

The T H Z R  process can generally be applied 
to the purification of any crystalline solute pro- 
vided that a suitable solvent can be found in 
which both the solute and the impurities are 
soluble but which must not be soluble in the 
crystalline solute nor in the crystalline impurities. 
The solute solubility should increase with 
temperature and should form, on crystal- 
lisation, sufficiently adherent crystals in order to 
delimit the trailing edge without causing solvent 
inclusion. The application of the process to 
metal or semiconductor purification is mainly 
limited by the finding of a common solvent for 
all the mixture components, and by the possibi- 
lity of subsequently eliminating solvent traces 
from the purified material. For  many organic 
substances the application of this process is in- 
convenient because the crystallisate becomes 
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saturated with solvent, which leads to the disap- 
pearance of the zone. The fact that, with the aid 
of the travelling heater zone-refining process, we 
can purify substances at temperatures much 
lower than their meltingpoints,  enables us to 
extend zone-refining to cases in which zone 
melting cannot be applied or presents diffi- 
culties, e.g. (i) for the purification of substances 
which decompose on melting, (ii) have too high 
a melting point, (iii) have, on melting, too high a 
vapour pressure or (iv) react with the surround- 
ing medium and with the materials with which 
they come into contact at the melting point. 

Reference [! 0] shows that by the addition of a 
solvent the separation of components can be 
favourably or unfavourably changed, the extent 
of which change can be estimated previously 
only if the ternary solubility diagram is known in 
detail. On this basis the author has attempted 
(i) to find the impurity distribution established 
along a semi-infinite solute-impurity solid binary 
mixture (AB) after successive zone passages, of 
a solute-impurity-solvent ternary solution (A B S) 
according to the T H Z R  process, (ii) to discuss 
the dependence of the impurity distribution on 
the quantities present in its expression and (iii) to 
indicate the best possible values of these quanti- 
ties such that the efficiency of a zone passage is 
a maximum. Various types of solid-solid-liquid 
isothermal ternary solubility diagrams exist [l 1 ] 
which show the compositions of phases present 
at equilibrium. Of the existing diagrams, those 
that are of interest may be divided into two 
distinct types [12]: type I, shown in fig. 2, corres- 
ponds to the case in which A and B form a solid 
solution, and type / / shown  in fig. 3, corresponds 
to the case in which A and B form an eutectic. 
The case in which A and B form two or more 
solid solutions may be reduced to type 1 if we 
restrict ourselves to the domain of a single solid 
solution. The cas~ in which A and B form one 
or more compounds may be reduced to type H 
if we restrict ourselves to the domain of one 
component and the adjacent compound, or 
compounds. When the solvent forms compounds 
with one of the components or with their solid 
solutions the situation may be reduced to either 
case H or case I by considering the compounds 
with solvent as pure components. 

The paper introduces several simplifying 
assumptions which are not entirely supported by 
practice. Nevertheless, our experience in the 
travelling heater zone-refining field shows, 
according to the analyses of certain systems, a 
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Figure 2 The ternary diagram of equilibrium solubility representing the changes of the zone and crystallisate composi- 
tion during the THZR process (A and B form a solid solution). (a) Triangular diagram representation. (b) Rectangular 
diagram representation. 

satisfactory agreement of the theory with 
practice. 

2. Single-Pass Impurity Distribution 
2.1. A and B Form a Solid Solution 
Let us consider the case most frequently met in 
practice, viz. the functions gA and gB as in- 
creasing functions and t and T in the range 
(rot - b t )  such that rnt < t < T < bt.  We 
assume that the isotherms, which yield the 

saturation equilibrium composition in the liquid 
phase for the ternary mixture AB S, for the tem- 
peratures t and T, can be obtained by a direct 
comparison, an assumption close to practice for 
small intervals (T- t ) .  In addition, we approxi- 
mate these isotherms by straight lines as shown 
in fig. 2. These assumptions lead to the trans- 
formation relations from t to .7", which transform 
the straight line (d] into (D) 

X = c~x and Y = / ? y  (1) 

B 
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Figure 3 The ternary diagram of equilibrium solubility representing the changes of the zone and crystallisate com- 
position during the THZR process (A and B form an eutectic). (a) Triangular diagram representation. (b) Rectangular 
diagram representation, 
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where 

X~ Y~ 
= - - a n d / 3  = - - ~ , / 3  > 1. (2) 

xs Ys 

In the following, as in [13], we make the 
following assumptions: 
(i) The impurity diffusion and the solvent 
inclusion in the crystallisate is negligible. 
(ii) In the solution zone the diffusion of the 
components provides a homogeneous zone 
composition according to the phase equilibrium. 

Let us consider a situation, during the zone 
passage, as shown in fig. 1. We take the area of 
the right section through the solute equal to 
unity, and consider the solute composition as 
homogeneous. Let the heater shift an infinitesi- 
mal amount dz in the direction of zone passage. 
This shift causes the cooling of the infinitesimal 
solution volume from the temperature T to the 
temperature t. This solution volume contains the 
infinitesimal solvent quantity ds = sdz/L. Its 
composition corresponds to the point P(X, Y) 
on the straight line (D), see fig. 2b. As a result 
of cooling, from this volume there crystallises 
(X  - x)sdz/L solute and ( Y - y)sdz/L impurity, 
the representative point of the saturated solution 
composition being shifted on the line P'p from 
the point P(X, I1) to the point p(x, y) during the 
crystallisation. The solvent quantity ds, being 
drawn into the solution zone, is reheated from 
the temperature t to the temperature T and con- 
tacting the impure substance dissolves from it 
until it reaches saturation. The representative 
point of the composition of the infinitesimal 
solution during the impure solute dissolution is 
shifted on the line p'-P' from the point p(x, y) to 
the point P'(X' ,  Y'). The line p"P' has the slope 
R 0 since the solute dissolution takes place layer 
by layer irrespective of the solute or impurity. 
In the solution zone, which is at temperature T, 
the ratios X and Y must satisfy the equation of 
the straight line (D), fig. 2b. After the shift these 
ratios vary with dX and d Y and the quantities 
a and b will vary correspondingly with sdX  and 
sd Y. Balancing the solute A in the zone after the 
shift we obtain the equation 

dz dz 
s(X' - x ) - ~  = s ( X -  x ) - ~  + sdX  (3) 

and similarly balancing the impurity B we obtain 
the equation 

dz 
s ( Y ' -  y ) - ~ = s ( r -  y ) ~ -  + s d Y .  (4) 
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Dividing equation 4 by equation 3 we obtain 
the equation 

dz 
R o ( X -  x)--s + RodX = 

dz 
( Y -  y )~ -  + d Y .  (5) 

Replacing x and y in equation 5 by their expres- 
sions from equation 1 we obtain 

( !)dz 
R o 1 - X - s  + RodX = 

(  )dz 
1 - Y - ~  + d Y .  ( 6 )  

However X and Y must satisfy the equation of 
the straight line (D) 

X Y 
X--~ -}- -~ - 1 = 0 �9 ( 7 )  

Eliminating X between equations 6 and 7 and 
grouping the terms, we obtain the differential 
equation 

dz d Y 
(8) 

L ' ( M -  Ro) -- (R o - k M ) Y -  RoYs 

where we have denoted 

L L 
M -- with L' -- 

X~, 1 
iX 

and with k = - -  

1 (9) 

1 

o~ 

Equation 8 enables us to determine the manner 
in which the quantity of impurity varies in the 
solution zone as a function of the distance 
travelled by the heater. In order to integrate this 
equation we have to make an additional 
approximation, by considering the variation of the 
solution zone length, as a function of the zone 
position, as being negligible. Thus we assume 
L', in equation 8, is a constant and equals the 
solvent zone length/' .  

Integrating equation 8 between limits 

dz 
.o ~'( M - ~  Ro) Yo (Ro - k M ) Y -  Ro Y~ 

we obtain 

R o  - k M  z ( R o  - k M ) Y  - R o  Y~ 

i -- Ro (' -- In (Ro k - ~ o _ - - R o Y ~  (10) 
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or writing y explicitly as a function of z 

R~ k-----M I RoY~ ] ~ , Y - -  Ro + or~ R o Z - ~ M l e - ~  h (11) 

where we have denoted 

Ro - k M  
h =  

Ro - M 

Replacing Y~ by the relation 

Ro - M 
Y~ . . . .  ro  (12) 

R0 

resulting from the intersection of the c~ystallisa- 
tion straight line with that characterising the 
initial zone composition 

Y = RoX (13) 

we obtain the required function in the form 

~ - - ~ q -  1 -  e -h~h' �9 (14) 

To find the expression of the ratio of quantity 
of impurity to the quantity of  solute in the 
crystallisate, as a function of the heater position, 
we form the ratio of the quantity of impurity to 
the quantity of solute which crystallised by the 
infinitesimal heater shift 

(Y -- y) Y 
R = ( x  - x------) = k ~ -  (15) 

The above assumptions led to this expression for 
R which relates the impurity/solute ratio in the 
crystallisate to the impurity/solute ratio in the 
solution zone, by means of the distribution co- 
efficient k. This expression differs from that for 
zone melting in that in zone melting the distribu- 
tion coefficient between crystallisate and melt, 
C~ = kCL, is a volumetric ratio [13] whilst in 
travelling heater zone-refining it is a gravimetric 
ratio, an expression advantageous in the treat- 
ment of the T H Z R process. Inserting into equa- 
tion 15 the expression for X, from equation 7, 
and that for Y, from equation 14, we obtain, 
explicitly, the distribution of the impurity ratio 
in the crystallisate as a function of the heater 
co-ordinate behind the zone 

R = k M  + Ro - k M  

1 +  - 1  R o Z M  
(16) 

To find the distribution of the impurity 
ratio along the crystallisate behind the zone 
passage we should express Y as a function of Z. 

For  this we replace dz in equation 8 by its 
expression as a function of dZ from the relation 

[ X - x  Y - Y )  dz dZ = ps ~ ( - - - ~  + pB 

which becomes 

- -paL'  k -  + Xs dz 

and we integrate as above. A transcendent equa- 
tion is obtained from which Y cannot be derived. 
However insertion of values for pA, pB, pS, k, M, 
R 0 and L' and consideration of equation 15 gives 
the impurity ratio distribution along the crystal- 
lisate. A more precise distribution can be ob- 
tained if we replace L' in equation 8 by its 
development function of Y assuming the dis- 
solution to take place without volume variation 

[ ;)q L ' = [ '  1 + p s  + - 

Figs. 4a and 5a show the variation of the 
quantity of zone impurity referred to the quantity 
of solvent introduced, as a function of the heater 
co-ordinate for k < 1 and for k > 1. It can 
be seen that as the zone advances, the quantity 
of impurity in the zone increases in the case 
k < 1, and decreases in the case of k > I, and 
when z tends to infinity the quantity of impurity 
tends to the limit 

1 
Y = "~ Yo" (17) 

In the case in which k = 1 the initial quantity of 
impurity in the zone, I(0, does not vary during 
zone passage. 

Figs. 4b and 5b show the impurity/solute ratio 
distribution after zone passage for the case 
k < 1 and k > 1 corresponding to the impurity 
zone enrichment and impoverishment during 
zone passage. While z increases and tends to 
infinity, the impurity ratio in the crystallisate 
increases proportionally, from the initial value 
kRo to R0, for k < 1, and decreases from the 
initial value kRo to R0, for k > 1. 

In fig. 2 one can examine the evolution of the 
ratios and gravimetric fractions that characterise 
the zone and the crystallisate composition during 
the zone passage, represented in a triangular and 
arectangulardiagram, fo rk  < 1. At the beginning 
of  the zone passage, the composition of  the zone 
solution is given by the point P0, and the com- 
position of  the corresponding layer of solution 
adjacent to the trailing edge after the crystallisa- 

627 



I. F. N I C O L A U  

/7 

Y~ 

Yo k<l kRo~ k<l 

0 ~-Z 0 ~'-Z 

(a) (b) 

Figure 4 (a) The variation of the quantity of zone impurity as a function of the heater co-ordinate. (b) The distribution 
of the impurity/solute ratio in the crystallisate as a function of the heater co-ordinate behind the zone passage (k < 1) 
(A and B form a solid solution). 

tion, is given by the point Po. The crystallisation 
at the beginning of the zone passage is repre- 
sented by the line PoPo. The initial impurity 
fraction in the crystallisate is kRo/1 + kRo. As 
the zone advances, the point that characterises 
the zone composition is shifted from P0, on the 
isotherm T, to higher B fractions to the limit P~ 
when z tends to infinity. Likewise the point Po, 
which characterises the layer of solution 
adjacent to the trailing edge, is shifted on the 
isotherm t and tends to p~, when z tends to 
infinity. The impurity fraction in the crystallisate 
during zone passage is shifted on the triangular 
edge AB to B and assumes the value Ro/1 -+- Ro, 
when z tends to infinity, i.e. to the initial value 
before the zone passage. 

Fig. 6 represents the distribution of the 
impurity ratio in the crystallisate as a function 
of the heater co-ordinate, according to equation 
16, for different values of k, k < 1 (~ = 2), 
k > 1 (fl = 2) and for R o = 1, M = - 2 .  

Obviously the farther the value of k from unity, 
the greater is the efficiency of the zone passage. 
Fig. 7 represents the dependence of  the above 
unit proportionality coefficients of  solubility, 
and /9, on the various values k, according to 
relation 9. It can be seen that small values of  k 
are possible only for values of/3 near unity, and 
high values of k only for values of  ~ near unity, 
respectively. 

In order to estimate the zone passage efficiency, 
for the first zone length, as a function of k the 
limit of the impurity ratio derivative, as a 
function of the trailing edge co-ordinate is cal- 
culated when this tends to zero. We obtain 

( d R ) = k ( 1 - k ) R o  (18) 

where we have denoted by z' = z/(' the reduced 
co-ordinate. 

The case in which k < 1 is favourable for the 
T H Z R  process. In this case the solute is 

R 

k>l 

0 :~Z 

k~ 

k>i 

(a) (b) 

Figure 5 (a) The variation of the quantity of zone impurity as a function of the heater co-ordinate. (b) The distribution 
of the impurity/solute ratio in the crystallisate as a function of the heater co-ordinate behind: the zone passage 
(k > 1) (A and B form a solid solution). 
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Figure 6 The dis t r ibut ion of the impuri ty rat io in the 

crystal l isate as a funct ion of the heater co-ord inate 

behind the zone passage for  d i f ferent values of the 

dist r ibut ion coeff icient. 

Ro --  k M  
R =  k M +  

Ro(1 - -  k) e_hZ/z; 
l + - -  

k(no - -  M )  

R o =  1, M =  - -2  for  all curves;  c~= 2 f o r k <  1, / 3 =  2 

for k > 1. 

generally the major  component. The derivative 
limit is close to zero for small values of  R0, and 
is closer, the farther k is from unity. The ad- 
vanced purification that is obtained for small 
values of  k and R0 for the co-ordinate z '  = 0, is 
maintained for a number of  zone lengths. 

The case in which k > 1 is unfavourable for 
the T H Z R  process. In this case if we wish to 
enrich the solute with a precious impurity pro- 
ceeding from a small ratio Ro, or reversing the 
names and proceeding from a high value of Ro 
we then wish to concentrate the solute and 
eliminate the impurity. The latter high values of 
R0 multiplied by the advantageous high values 
of  k lead to values of  the limit for the co- 
ordinate z' = 0 which are close to minus 
infinity. These values are inconvenient for the 
T H Z R  process since the high concentration 
which is obtained for higher values of k affects 
only the crystallisate in the vicinity of  the zero 
co-ordinate and, as we depart f rom z' = 0, the 
concentration decreases very rapidly. 
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Figure 7 The dependence of the propor t ional i ty  co- 

eff icients of solubi l i ty  for  di f ferent values of the distr ibu- 

t ion coeff icient. 

Fig. 8 represents the impurity ratio function 
of the heater co-ordinate according to equation 
16 for different values of  M in the interval 
( -  0% 6), for R 0 = 1 and k = 0.1 (o~ = 2). 
The limiting distribution for M = - oe is the 
most favourable. 

Fig. 9 shows the same dependence for R 0 = 1 
when k = 10 (/3 = 2). In this case the limiting 
distribution for M = 0 proves to be the most 
favourable. 

In figs. 8 and 9 the limiting distributions for 
M = 0 and for M = - 0% are calculated, pro- 
ceeding from equation 16 with the relations 

R(M=o)  = R ~  

1 + ( 1 _  1)e_Z/e (19) 

and 

R(~z=-~) = R0[1 - (1 - k) e-kZ/"] . (20) 

I t  can be seen that the limiting distribution 20 is 
again the Z M process distribution, but instead 
of concentrations we have ratios. This result 
enables us to use all the results from the zone 
melting study to make estimations for travelling 
heater zone-refining. When k < 1 the most 
favourable results are obtained, and for k > 1 
the most unfavourable results are obtained. As 
distinct f rom the Z M process, for which the 
concentration depends only on the distribution 
coefficient k (defined entirely by the nature of the 
solute-impurity system), in the T H Z R  process 
the concentration distribution depends on both 
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Figure 8 The distr ibution of the impurity ratio in the crystall isate as a funct ion of the heater co-ordinate behind the 
zone passage for different values of M~(--oo, O). 

the slope M and the distribution coefficient k 
while M and k both depend on (i) the nature of 
the solute-impurity-solvent system and on (ii) the 
choice of temperatures T and t. 

In the following we shall attempt to determine, 
within the temperature range (mt  - b t )  charac- 
teristic of the solvent, the working temperatures 
for crystallisation t* and for dissolution T* in 
order to obtain values of  k and M which give a 
maximum efficiency for the zone passage. We 
shall consider that the zone passage efficiency is 
a maximum for k* and M* when 

[F(k *, M*)I = sup IF(k, M)[ (21) 
where 

F(k,  M) = lim E = lim (Roz'  - Rdz' ) ,  
z'----~oo z'.----~oo 

(22) 
E being the shaded area in figs. 4b and 5b, 
contained between the impurity ratio distribu- 
tion curve, the ordinate, and the initial distribu- 
tion straight line. Calculating the limit we find 

6a0  

h 
F(k ,  M )  = (R  o - M )  In ~ .  (23) 

The function F has no maximum or minimum 
within the domain k and M, for the physical 
problem, i.e. ke(0, -koo) and M e ( -  oo, 0). If  we 
neglect a relative maximum of the function F 
with respect to the variable M (which could 
occur for small M values, and which differs 
insignificantly from the value of the function for 
M = - m) i.e. if we consider that F decreases 
with respect to M then within a certain domain 
(kl, k2) c (0, +oo),  (M1, M2) c ( - m ,  0), 
where kl < k2 and M1 < Ms for ks < 1, sup F 
=/7(kl ,  M1) and for kl > 1, inf F = F(ks ,  M2).  
Expressing M and k as a function of  T and t, by 
means of  the functions gA and gB and their 
definition relations, we obtain 

gB(T) 
M(T) -- gA(T) (24) 

and 
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k(T, t) = gB(T) -- g s ( t ) ,  gA(T) (25) 
g A ( r )  - -  gA(t) gB(t) 

where tE[mt, bt - (T  - t)] and Te[mt  -k (T  - t), 
bt]. On examining the behaviour of  the functions 
M(T) and k(T,  t) within the possible temperature 
domain for t and T we shall determine the 
corresponding variation domain for M and k, 
(inf M, sup M) and (inf k, sup k). In the case in 
which sup k < 1, k* = i n f k  and M* = inf M 
satisfy the condition 21 and we determine T* so 
that M(T*)  = inf M, then we determine t* so 
that k(T*, t*) = infk.  In the case in which k > 1, 
k* --  sup k and M* = sup M satisfy the condi- 
tion 21 and we determine T* so that M(T*)  = 
sup M, then we determine t* so that k(T*,  t*) 
supk .  In the case in which inf k < 1 < s u p k  
then IF(inf k, inf M).I and IF(sup k, supM) l 
must be calculated and we select those extreme 
values for k and for M that give the greatest 
value of I f  [. 

On the other hand, from the viewpoint of 
process productivity, it is desirable to work with 

as large a crystallisation rate as possible. The 
selection of a high crystallisation rate, i.e. a high 
supersaturation, and hence a large temperature 
difference T - t (besides the fact that increases 
in the solvent quantity are inevitably included in 
the crystallisate, thus favouring zone loss and 
preventing the dissolution and crystallisation 
taking place at equilibrium), is inconvenient in 
that it determines high proportionality co- 
efficients of solubility, ~ and fl, much higher than 
unity. As can be seen in fig. 7 in such cases k is 
close to unity and the process efficiency decreases 
substantially. From fig. 7 it can be seen that for 
k to be far f rom unity it is necessary that one of 
the two coefficients ~ and /3 be small, which 
require a small temperature difference T - t. In 
addition, the calculation of  the opt imum condi- 
tions often leads to the result t* = T*, so that the 
selection of the crystallisation temperature is 
based on technological considerations. 

2.2. A and B Form an Eutect ic 

As in section 2.1 we consider the functions gA 
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and gB as increasing functions, and t and T 
within the range (mt - bt), so that mt < t < T 
< bt. Of course we assume that the isotherms 
giving the saturation equilibrium compositions 
in the liquid phase for the ternary AB S mixture, 
for the temperatures t and T, can be obtained by 
a direct comparison. In addition, we approxi- 
mate these isotherms by straight lines, as is 
shown in fig. 3b. We also make the assumptions 
(i) and (ii). We distinguish, according to fig. 3, 
between two domains denoted by I and II. 
Domain I corresponds to the quadrilateral 
x~X, Pep,  and domain II corresponds to the tri- 
angle p,P,PE.  The T H Z R  process occurs 
differently in the two domains. 

We select the point P0, which characterises the 
solution zone composition at the beginning of 
the zone passage, on the straight line (D), 
according to fig. 3, below the point P ,  belonging 
to the domain I, i.e. in that part which separates 
the homogeneous liquid phase from the hetero- 
geneous phase consisting of  solution and 
crystallisated solute A. 

The transformation relations from t to T 
which transform the straight line (d) into the 
straight line (D) are 

Y 
X = Xs + _~I' Y = y "  (26) 

Giving an infinitesimal shift to the heater dz in 
the direction of zone passage, according to fig. 1, 
and retaining the notation used in section 2.1 we 
obtain the balance equations 3, 4 and 5, which 
are also valid in this case. Replacing y in equa- 
tion 5 by Y, according to equation 26, we 
obtain 

dz 
Ro(X  - x ) - ~  + R o d X  = d Y .  (27) 

x and y must satisfy the equation of the straight 
line (d) 

y = m(x  - x~) ,  m --  Y~ (28) 
Xe - -  Xs  

and X and Y must satisfy the equation of the 
straight line (D) 

r .  
Y = M ( X -  X~), M : X e  - X---~" (29) 

Eliminating in equation 27 X and x, with the 
help of equations 28 and 29, we obtain the 
equation 

1 dz dY 
L : H Y + (X~ - xs) (30) 
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where we have denoted 

1 1 1 1 
G -- R0 M and with H = _ ~ / -  m 

Making, as in section 2.1, the approximation 
that the solution zone length does not vary as a 
function of position and considering it equal to 
the solvent zone length, we can integrate equa- 
tion 30 between limits i:l z ? 

-- Y o H Y + ( X s -  x~) 

Giving 

n z  H Y  + (Xs - x ,)  
G [ -- In n y  ~ + (X~ - x , ) '  (31) 

or writing Y as an explicit function of z 

y =  X ~ -  x~ + Yo +--'-ff---X~- x~) eHz~ct" 

(32) 
From fig. 3 we can examine as in section 2.1 

the evolution of the gravimetric ratios which 
characterise the zone and crystallisate composi- 
tions during zone passage. At the beginning of  
the zone passage the solution zone composition 
is given by the point P0, and the composition 
corresponding to the trailing edge after crystal- 
lisation by the point P0. The crystallisation at the 
beginning of the zone is represented by the line 
PoPo. The initial impurity fraction in the crystal- 
lisate is zero. The point characterising the zone 
composition is shifted, by the zone passage, from 
P0, on the isotherm T, and reaches the point Pe 
when the co-ordinate z = ze. Similarly the point 
Po, characterising the composition of the solu- 
tion layer adjacent to the trailing edge, is shifted 
on the isotherm t and reaches p,  when the co- 
ordinate z = z~. Along the length z~ the impurity 
fraction in the crystallisate remains equal to 
zero, if crystallisation takes place in domain I. 

The co-ordinate z, can be determined with the 
aid of  equation 31 by setting Y = Y~ and 
replacing Yo by the value corresponding to the 
intersection of the straight line (D) with the 
straight line which determines the initial com- 
position Y = RoX, namely Yo ~ Xf fG 

X s  - -  Xs  

z ,  G Y* + H 
(33) 

G - +  H 

For  H = 0, i.e. for M = m the relation 32 
becomes a linear function 



P U R I F I C A T I O N  BY S O L U T I O N  Z O N E  P A S S A G E S .  P A R T  1 

0 z o J  Ze ~ z e  
(H<O) (H=O) (H=-O) 

(a) 

~Z I S  
z ~  2e "--ze 

(H<O) (H=O)(H>O) 
(b) 

~.z 

Figure 10 (a) The variation of the quantity of zone impurity as a function of the heater co-ordinate. (b) The distribution 
of the impurity/solute ratio in the crystallisate as a function of the heater co-ordinate behind the zone passage (A and 
B form an eutectic). 

X s - -  X s 2  
Y---- Y o + - -  

c 

and the relation 33 

z , _  GY~ - X s _  G Y~ - Y0. 
( X~ - x~ Xs - x~ 

The co-ordinate Z~ can be expressed more 
simply by introducing into equation 30 the 
expression of dz as a function of dZ from the 
relation 

( X - x  
- -  dz dZ  : ps L pA 

which becomes 

( H Y +  ( X , -  x,) 
dZ  --- ps ~ pA dz 

and integrating as above, we obtain the expres- 
sion 

z._oS(oy~_x3. 
( pA 

Fig. 10 represents the variation of the quantity 
of impurity in the solution zone, and the im- 
purity ratio in the crystallisate, as a function of 
the heater co-ordinate. According to equation 33 
large values of z, are obtained for high values of 
the difference Y, - Yo. If the initial impurity 
content i s R  0 > R~ = Y j X ~ t h e  Yo > Y~and 
z~ tends towards zero. To obtain high Y~ values 
which lead to large values of z,, we shall choose 
(i) the dissolution temperature T near the solvent 
boiling temperature and (ii) the temperature 
difference, between the dissolution temperature 
and the crystallisation temperature, to be as 
small as possible. 

Continuing the zone passage, the heater 
co-ordinate exceeds z,, and the point representing 
the solution zone is shifted away from P,, in the 
sense shown in fig. 3 on the straight line (D), 
thus leaving domain I, entering domain II. 

When the heater co-ordinate tends to infinity 
the solution zone composition tends to a 
limit, represented by the point Poo. Within 
domain II, as distinct from domain I, the line 
totally characterising crystallisation ends at the 
invariant point p,  (represented by dots in 
fig. 3b). More exactly, only the solute A crystal- 
lises initially from the infinitesimal volume of 
solution in the vicinity of the trailing edge, which 
was cooled from temperature T to t. The tem- 
perature of the infinitesimal volume of solution 
reaches 0, t < 0 < T, and the point representing 
the composition of the solution during cooling 
is shifted, when z tends to infinity, from Poo to 
p~o. Cooling from 0 to t, mixtures of A and B of 
variable composition crystallise from the in- 
finitesimal volume of solution. The point repre- 
senting the solution composition on the curve, 
P, which gives the invariant compositions in the 
crystallisate, shifts on cooling frompoo to p,. The 
impurity fraction in the last crystallisate from the 
infinitesimal volume,Rjl  + R,, is obtained, ac- 
cording to fig. 3a at the intersection of the edge 
BA with the straight line ~ .  

The partial balance equations for the solute 
and impurity 3 and 4 are written in this case 

dz dz 
s(X'  - x~) ~ = s(X - x~) Z + sdX  (34) 

dz dz 
s ( Y ' -  y ~ ) z  = s ( Y -  y~)-~ + s d Y .  (35) 
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Dividing equation 35 by equation 34 we obtain 
the equation 

dz 
R o ( X -  x~) ~ + RodX = 

d z  
( Y -  Y")Z + d Y .  (36) 

Replacing X in equation 36 as a function of Y, 
according to the equation of the straight line (D), 
equation 29, we obtain 

dY 1 dz 
G ( Y -  Y,) - (X,  - X e ) -  G L (37) 

where we have retained the significance of the 
notation used in equation 30 for the domain I. 
Equation 37 also enables us to determine, in this 
case, the manner in which the quantity of  im- 
purity from the solution zone varies as a function 
of the distance travelled by the heater. Integrat- 
ing between limits, and retaining the approxima- 
tion that L remains constant during the zone 
passage end equal to/ ,  we obtain 

'I zdz Y d Y  = --G 

re a ( Y  - L i  -- (x~ - xJ  z~ 
( a ( Y -  L )  I z ~ - z  

In 1 -  X, x~ / -  ( 

or writing Y as an explicit function of z 

X e  __ Xe ( Z e -- Z )  
Y =  Y , + ~  1 - e ~  . (38) 

When z tends to infinity, Y tends to the limiting 
value 

Xe -- Xe 
Yo~ = Y~ + G < YE" (39) 

Fig. 10a represents the variation of  the zone 
impurity contents as the heater advances for 
domain II, according to equation 38. 

When the heater exceeds the co-ordinate z,, 
the impurity ratio in the crystallisate ceases to 
be zero, because, according to the crystallisation 
scheme of the domain II, B, in addition to A, 
also crystallises. Thus, 

8 

(Y - y~) ? d~ 
R _ _  - -  _ _  
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8 
( X - Xe) -[ dz 

Y -  Y~ 

-- X e 

Y - Y ~  

M + X,  - x .  

(4o) 

Inserting into relation 40 the expression for Y 
from relation 38 then 

1 
R =  

1 G 
+ z~ - z (41) 

1 - e  

Expression 41 shows that for values of z tending 
to infinity, the impurity ratio in the crystallisate 
tends to R0. 

To find impurity ratio distribution as a 
function of the trailing edge co-ordinate we must 
replace dz in equation 37 by its expression as a 
function of dZ from the relation 

[ ( X - x ~ _ ] _  Y - y ~ l d z  dZ ps Z ----0-2-- pB / 

which becomes 
d Z =  

pAL + ( Y -  Y") + (X, - x~) dz 

which we integrate as above. We obtain in this 
case as in section 2.1, a transcendent equation 
from which Y cannot be derived. However, in- 
sertion of values for pA, pB, ps, M, R0, L and 
(x,, y,) and consideration of equation 40 allow 
us to determine the impurity ratio distribution 
along the crystallisate. 

The variation of the impurity ratio, as a 
function of the heater co-ordinate, has been 
derived in this section, proceeding from an 
initial impurity ratio in the solute of R 0 < R~ 
< RE = YE/XE. After a zone passage, beginning 
with the starting zone passage extremity, we can 
distinguish, in the crystallisate, a section I in 
which the impurity ratio is zero and a section II, 
in which the impurity ratio is less than that in the 
initial solute for a finite part of it. If however 
Re ~< R0 < RE, then after the zone passage the 
impurity distribution corresponds only to that 
of section II. If in the solute R0 > RE then all 
deductions remain as above, if we consider the 
solute as the impurity and conversely. If acci- 
dentally R0 ----- RE then the impurity ratio in the 
substance remains unchanged after the zone 
passage. This case of inefficiency of the process 
may be avoided, however, by selecting a higher 
dissolution temperature T' such that Ro' = 
RE < RE' (where we have denoted R' as the 
impurity ratio corresponding to the dissolution 
temperature T'). 
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3. Multipass Impurity Distribution 
3.1. A and B Form a Solid Solution 
The T H Z R  process efficiency improves, as does 
the Z M  process, when the zone passage is 
repeated a number of times. In the following we 
shall try to find the distribution of the impurity 
ratio in the crystallisate after n zone passages 
as a function of the heater co-ordinate z by 
considering, for each zone passage, the crystal- 
lisate extremity at which the zone passage begins. 
We shall retain the significance of the notation 
used in section 2, but introduce the subscript n, 
which indicates the zone passage rank. We shall 
keep all the assumptions and approximations 
made for a single zone passage in section 2.1. In 
addition we shall assume that, for z = 0, the 
impurity ratio in the n-th zone is equal to the 
impurity ratio in the crystallisate at the co- 
ordinate z = 0 from zone passage n-1 

That is, we do not introduce pure solvent zones 
at the zone passage starting extremity, but 
instead, solution zones containing both solute 
and impurity, so that the impurity ratio in the 
solution is equal to the impurity ratio in the 
crystallisate with which it comes into contact. 
The zone does not dissolve the crystallisate. 
Because, in practice, we work with pure solvent 
zones for reasons in addition to those mentioned 
in the introduction, the impurity ratio values in 
the crystallisate, given by the distributions de- 
rived in the following, must be consequently 
considered as ideal values. 

To find the impurity ratio distribution along 
the crystallisate behind the rank n zone passage 
R,`(z), we shall proceed from relation 15, which 
for the n-th zone passage is, 

R,`(z) = k Y,` " (43) 
xn 

The material partial balance equations 3 and 4 
for the n-th zone passage are 

dz dz 
s(X',` - x,,) -~ = s(X,` - x~) -~ + sdX~ (44) 

dz dz 
s(Y' .  - y . )  -~ = s(Y. - y . )  Z + sd Y . .  (45) 

Dividing equation 45 by equation 44 and 
replacing x,` and y,, by their values as a function 
of X~ and Yn, from transformation relation 1, 
we obtain 

R n - l ( Z )  ~-  ( 4 6 )  

( 1 - ! ) X , ` d z + L d X n  

The impurity and solute quantities, related to the 
solvent quantity in the solution zone for the n-th 
zone passage, must satisfy the equation of the 
straight line (D), equation 7, i.e. 

Y,̀  
X,` = --~ + X , .  (47) 

Eliminating X,, and Y, between relations 43, 46 
and 47 and replacing in the relation thus ob- 
tained, the differential d Y,` by a function of 
differential dR,,, resulting from the differentia- 
tion of equation 42, and taking into account the 
condition d Y,, = M d X ,  we obtain the differ- 
ential equation 

M dR,, (Rn- ,  - ) ~ + Rn 2 - (Rn-1 + kM)R,`  + 

kMR, ` - I  = 0 (48) 

with the initial condition 

R,(O) = knRo 

which resulted from relation 42. The differential 
equation 48 is a recurrent differential equation 
of the Riccati type which governs the impurity 
ratio distribution in the crystallisate after the 
n-th zone passage. Making the substitution 

1 
R(z') = k M  + r,`(z') (49) 

we obtain the differential equation 

dr~ 1 
dz--7 + hnr~ R,,-1 - M --  0 (50) 

where we have denoted 

R,`-I - k M  
h n - -  R,`-I - M 

with the initial condition 

1 
r,`(O) = k(k,`_~R ~ _ M )  " (51) 

The differential equation 50 is a linear differential 
equation, which, when integrated with the initial 
condition 51, leads to the solution 

R,`(z') = k M  + f (52) 
f ~' h,`dz' dz' 

zt 

C,~ + J o 
o R , ` - I  - M 
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Figure 11 The distr ibution of the impurity ratio along the crystall isate behind the f i rst  nine zone passages (A  and B 
form a solid solution). 
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Figure 12 The distr ibution of the impurity ratio along the 
crystal l isate behind the f irst nine zone passages (A  and 
B form a solid solution). 
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where the integration constant, C~, must be 
determined for the initial condition for each n. 
We have obtained a recurrence integral equation 
which gives Rn, when Rn-1 is known. When 
n = 1, then R , -  1 is equal to R0 and R1, known 
from section 2.1, is obtained. For  n > 1, equa- 
tion 52 becomes more and more complicated 
with increasing values of  n, and the analytical 
solution becomes impossible. An exact solution, 
as a series with exponential terms similar to 
that found by Lord [14] for the concentration 
distribution in the Z M  process, cannot be found 
in this case. 

Fig. 11 represents the solutions R~-9 obtained 
from equation 52, as a function of the number 
of reduced zone lengths, by means of a com- 
puter for k = 0.5 and M = - 1  starting from 
Ro = 1, while fig. 12 represents the same solu- 
tions but for k = 5, M = - 2, also starting from 
Ro = 1. The exact solution 52 is only convenient 
for small values of  n. I f  however we wish to find 
the impurity ratio distribution in the crystallisate 
for higher values of n, then solution 52 is no 
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longer practical. For finding suitable approxi- 
mate solutions for higher numbers of n we shall 
proceed as Reiss [15]. We shall consider the 
subscript n as a continuous variable and the 
sequence of functions, R~(z'), as a two-variable 
function R(z', n). Replacing R~-l(z '  ) in equation 
48 by the first two terms of its development into 
a Taylor series about (z', n) 

R~ l(z ')  = R(z ' ,  . -  1) = 
OR(z', n) 

R(z', n) On (53) 

we obtain the first-order partial differential 
equation 

OR OR (R OR OR 
On Oz' - M )  Fz' - (R - k M )  ~ = 0 (54) 

the solutions of which have to fulfil the initial 
condition 

R(z', O) = Ro (55) 

and the boundary conditions 

R(O,n) = k ' ~ R o a n d R ( o % n )  = R 0  �9 (56) 

The distribution given by the complete integral 
of the differential equation 54 departs, however, 
too much from the exact distribution calculated 
from equation 52, being incompatible with the 
boundary conditions and with the initial condi- 
tion of the problem. However, we can use the 
approximate solution, 

R = R0[1 - (1 - k ") e -k"'] (57) 

which is an exponential function with a linear 
exponent with respect to the variables z' and n, 
as the complete integral of the differential equa- 
tion 54, but which satisfies the boundary 
conditions and the initial condition of the 
problem. 

From the application point of view, due to the 
boundary condition 

d Rn(0) 
dz' -- k~(1 - k)Ro (58) 

which is obtained from equation 48 and from the 
first boundary condition 56, it is apparent that 
the case k > 1 is unfavourable for the T H Z R  
process as well as for the Z M process. Unlike the 
Z M  process, the T H Z R  process does not form 
a limiting distribution with an increase in the 
number of zone passages. 

3.2. A and B Form an Eutectic 
We shall try now to find the impurity ratio 

distribution along the crystallisate after n zone 
passages, considering the impurity ratio in the 
initial solute as being Ro > Re. 

Equation 34 and 35 from section 2.2, for 
domain II, written for the n-th zone passage are 

dz dz 
s ( X ' ~ -  x ~ ) - s  - x~)-s  + sdX,, (59) 

dz dz 
s ( Y ' , - y • )  z = s ( Y " -  y , ) z  + sdYn .(60) 

Dividing equation 60 by equation 59 we obtain 

(Y~ - y , ) d z  + L d Y ,  
R"- l (z)  = (X,~ - x , )  dz 4 - L  dX~ (61) 

Relation 40 is 
y~ - y ,  

- -  ( 6 2 )  Rn(z)  X . -  x~ 

and equation 29, of the straight line (D), is 
written more suitably in the form 

Y,~ - Y ,  = M(X, ,  - X~) . (63) 

Eliminating X.  and Y, between equations 61, 
62 and 63, we obtain the differential recurrent 
equation 

M dR.  
(R~-t  - ) ~z' 4- R~2 - (R. -1  @ M)R~  4- 

M R n - I  = 0 (64) 

where the reduced co-ordinate z' = z/(. 

This first order differential equation of Riccati 
type is identical to equation 48 from section 3.1 
for k = 1. But the initial condition for equation 
64 

M(Rn-I(O) - Re) (65) 
- -  X e  R,~(O) x~ R~-~(O) - R~ + M 1 - 
X~ 

is obtained in a recurrent form from condition 
42. The general solution of the problem is 
obtained from the solution of equation 52 in 
which we set k ---- 1 

e zr 
Rn(z) = M 4- (66) 

fz,  dz' 
e zt 

C.  4- o R~--~-- M 

where C~ must be determined, taking into 
account the initial condition 65, for each n. In 
this way we can obtain the solutions up to n = q 
for which Rq(O) < R. < Ro-I(0). The impurity 
ratio distributions along the crystaUisate, be- 
ginning with Rq+l, may be obtained in another 
way, namely 
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R . ( z ' )  = 0 for z' < z' . ,e, n /> q 4- 1 

and 

n . ( z ' )  = 

M 4 -  

(67) 

e Z t - z l n , e  

I2 ' eZ'-z'*'" 
C .  + R . - 1  - )( l  dz '  

z'  > Z',~,e,n /> q 4- 1 (68) 

with the initial condition R(z ' . ,~)  = 0, which 
determines the constant C,~ for each n. In order 
to find the sequence Z',,,e let us consider the 
differential equation 30 applied to the zone 
passage of rank n 

1 dY~ 
G--~ dz' = H Y,. 4- (X~ - x~) (69) 

where ( '  
Gn---- R~-I 

Integrating between limits we obtain 

I ~- dz' : -  Y.-1 (0) H r .  4- (Z ,  - x.)  

i.e. 

f : '~ ,~ 1 1 H Y e 4 - X , - x ,  
dz' =- ~ I n  H Y ,  r I ( O )  -+-i~ - x~ " 

(70) 

For  n/> q 4- 2, the right hand side of  equation 
70 remains constant because Y.-t(0) = 0; the 
function 1/Gn is obtained from 1/Gn-1 by the 
translation z'  = z' 4- z ' . -~, ,  which leads to a 
constant value for the difference 

J Z ' n ,  ` : Z ' n ,  e - -  z t n - 1 ,  ` . (71) 

In addition R,~-~(z') _~ Ro for n /> q 4- 2 so that 
Rn+l(z ')  is also obtained from R,~ by the same 
translation. Consequently, beginning with the 
rank q 4- 3 of  zone passage it is advantageous to 
begin the zone passage f rom the co-ordinates 
z' q+s, ~, z' q+4, ~, �9 �9 �9 and to collect successively the 
crystallisate present up to these co-ordinates as a 
pure finite solute. 

Fig. 13 represents the variation of  the impurity 
ratio along the crystallisate behind four zone 
passages for the case for p~(4,5), P~(5,6), x~(8), 
X . ( l l )  and R0 = 1. The curves from fig. 13 are 
obtained graphically. 

4. C o n c l u s i o n s  

From the foregoing theoretical analysis of  the 
T H Z R  process we may draw the following 
conclusions: 
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Figure 13 The distribution of the impurity ratio along the 
crystallisate behind thefirst four repeated zone passages 
(A and B form an eutectic). 

(i) The process is particularly advantageous for 
solutes which form eutectics with the impurities, 
a frequent case in the field of  inorganic salts. 
(ii) The process is suitable for the purification of  
solutes that form solid solutions with the im- 
purities since they permit k < 1 to be as far as 
posfible f rom unity. 

When the substance and the impurity form 
either an eutectic or a solid solution it is con- 
venient to select a high dissolution temperature 
near the solvent boiling temperature and a 
crystallisation temperature~as near as possible to 
the dissolution temperature. 

N o t a t i o n  

A - the solute 
B - the impurity 
S - the solvent 
pA, pB, p s -  the solute, impurity and solvent 
densities 
t - the crystallisation temperature 
T - t h e  dissolution temperature 
z - the co-ordinate of  the heater 
Z -  the co-ordinate of the trailing edge 
z ' - t h e  reduced co-ordinate of  the heater 
[' or subscript t - the solvent zone length 
[' or subscript ~, - the solvent reduced zone length 
L - the solution zone length 
L'  - the solution reduced zone length 
a - the quantity of  solute dissolved in the solvent 
zone 
b - t h e  quantity of  impurity dissolved in the 
solvent zone 
s - t h e  quantity of  zone solvent 
a s -  the quantity of  solute dissolved, at satura- 
tion, in the solvent zone, at the crystallisation 
temperature, and in the absence of impurity 
A s -  idem, but at the dissolution temperature 
b s -  the impurity quantity dissolved, at satura- 
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t ion,  in the solvent  zone, at  the crys ta l l i sa t ion 
t empera tu re  and  in the absence o f  solute 
B.~ - idem, bu t  a t  the  dissolut ion t empera tu re  
x - the gravimetr ic  ra t io  between the quant i ty  o f  
solute dissolved in the solvent  zone (at sa tura-  
t ion,  and  at  the crys ta l l i sa t ion tempera ture )  and  
the solvent  zone quan t i ty  
X -  idem, but  at  the d isso lu t ion  t empera tu re  
x~, X~ - the same significance as x and  X bu t  in 
the absence o f  impur i ty  
y - the gravimetr ic  ra t io  between the quant i ty  of  
impur i ty  dissolved in the solvent  zone (at 
sa tura t ion ,  and  at  the crys ta l l i sa t ion tempera-  
ture) and  the zone solvent  quant i ty  
Y -  idem, but  a t  the d issolut ion  t empera tu re  
Yo - idem, for  z = 0 

y~, Y~ - the same significance as y and Y bu t  in 
the absence of  solute 
g A -  the exper imenta l  funct ion tha t  gives the 
solubi l i ty  o f  the solute in the solvent  as a gravi-  
met r ic  ra t io ,  in the absence o f  impur i ty ,  as a 
funct ion of  t empera tu re  
g ~ -  the exper imenta l  funct ion tha t  gives the 
solubi l i ty  o f  the impur i ty  in the solvent  as a 
gravimetr ic  ra t io ,  in the absence o f  solute, and  
as a funct ion  o f  t empera tu re  
m t -  the solvent  mel t ing t empera tu re  
bt - the solvent  boi l ing  t empera tu re  
~, / 3 -  p ropor t i ona l i t y  coefficients of  solubi l i ty  
for  the solute and  impur i ty ,  respectively 
(D) - t h e  d issolut ion  s t ra ight  line 
( d ) -  the crys ta l l i sa t ion s t ra ight  line 
M -  the slope o f  the d isso lu t ion  line 
m - the slope o f  the crys ta l l i sa t ion  line 
k - the impur i ty  d i s t r ibu t ion  coefficient between 
the crystal l isate  and  the solut ion zone 
h - the exponent ia l  funct ion cons tan t  
R -  the gravimetr ic  ra t io  impur i ty / so lu te  in the 
crystal l isate 

Ro, Re,  R~  - idem, but  in the zone solut ion cor-  
responding  to the poin ts  P0, P ,  and  P~ 
F - t h e  curve descr ibed by  the re turn  po in t  o f  
the sa tura t ion  solubi l i ty  isotherms as a funct ion 
o f  the t empera tu re  for  the case when A and  B 
form an eutectic 
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